Section 6.4 Solutions

\#1-11: Write the equation in logarithmic form.

1) $3^{2}=9$ (write the word log, make the 3 the base, switch the 2 and 9)

Answer: $\log _{3} 9=2$
3) $3^{4}=81$ (write the word log, make the 3 the base, switch the 4 and 81)

Answer: $\log _{3} 81=4$
5) $3^{-1}=\frac{1}{3}$ (write the word log, make the 3 the base, switch the -1 and $1 / 3$)

Answer: $\log _{3} \frac{1}{3}=-1$
7) $e^{y}=x$ (write the word log, make the e the base, switch the y and x, then rewrite with In notation) $\log _{e} x=y$

Answer: $\ln (x)=y$
9) $\mathrm{e}^{3}=20.09$ (write the word log, make the e the base, switch the 3 and 20.09, then rewrite with In notation)
$\log _{e} 20.09=3$
Answer: $\ln (20.09)=3$
11) $e^{1}=2.72$ (write the word log, make the e the base, switch the 1 and 2.72 , then rewrite with In notation)
$\log _{\mathrm{e}} 2.72=1$
Answer: $\ln (2.72)=1$
\#12-26: Write the equation in exponential form.
13) $\log _{3} 81=4$ (scratch out log, leave three low, switch 81 and 4)

Answer: $3^{\mathbf{4}} \mathbf{= 8 1}$
15) $\log _{2} 64=6$ (scratch out log, leave e low, switch 64 and 6)

Asnwer: $\mathbf{2}^{\mathbf{6}=64}$
17) $\log _{6} 6=1$ (scratch out log, leave 6 low, switch 6 and 1)

Answer: $\mathbf{6 T}^{\mathbf{1}=6}$
19) $\log x=3$ (write with base 10, then scratch out log, leave 10 low, switch x and 3)
$\log _{10} x=3$

Answer: $10^{3}=x$
21) $\ln (x)=1$ (write with base e, then scratch out log leave e low, switch 1 and x)
$\log _{e} \mathrm{X}=1$

Answer: $\mathbf{e}^{1}=\mathbf{x}$
23) $\ln (2 x)=w$ (write with base e, then scratch out log leave e low, switch $2 x$ and w)
$\log _{e} 2 x=w$

Answer: $\mathrm{e}^{\mathrm{w}}=\mathbf{2 x}$
25) $\ln \left(e^{2}\right)=2$ (write with base e, then scratch out log leave e low, switch e^{2} and 2)
$\log _{e}\left(\mathrm{e}^{2}\right)=2$
Answer: $\mathrm{e}^{\mathbf{2}}=\mathrm{e}^{2}$
26) $\ln \left(e^{3}\right)=3$ (write with base e, then scratch out log leave e low, switch e^{3} and 3)
$\log _{e}\left(\mathrm{e}^{3}\right)=3$

Answer: $\mathrm{e}^{3}=\mathrm{e}^{3}$
\#27-56: Find the logarithm value without using a calculator.
27) $\log _{2} 2$ (asks 2 to what power is $2,2^{x}=2$)

Answer: 1
29) $\log _{7} 7$ (asks 7 to what power is $7,7^{x}=7$)

Answer: 1
31) $\log _{3} 1$ (asks 3 to what power is $1,3^{x}=1$)

Answer: 0
33) $\log _{4} 1$ (asks 4 to what power is $1,4^{x}=1$)

Answer: 0
35) $\log _{4} 64$ (asks 4 to what power is $64,4^{x}=64$)

Answer: 3
37) $\log _{5} 5$ (asks 5 to what power is $5,5^{x}=5$)

Answer: 1
39) $\log 1$ (asks 10 to what power is $1,10^{x}=1$)

Answer: 0
41) $\log 100$ (asks 10 to what power is $100,10^{x}=100$)

Answer: 2
43) $\log _{2} 128$ (asks 2 to what power is $128,2^{x}=128$)

Answer: 7
45) $\log _{2} 2^{3}$ (asks 2 to what power is $2^{3}, 2^{x}=2^{3}$)

Answer: 3
47) $\log _{5} 5^{6}$ (asks 5 to what power is $5^{6}, 5^{x}=5^{6}$)

Answer: 6
49) $\log _{4} 4^{5}$ (asks 4 to what power is $4^{5}, 4^{x}=4^{5}$)

Answer: 5
51) $\ln (e)$ (asks e to what power is $e, e^{x}=e$)

Answer: 1
53) $\ln \left(e^{3}\right)$ (asks e to what power is $e^{3}, e^{x}=e^{3}$)

Answer: 3
55) $\ln \left(e^{-2}\right)$ (asks e to what power is $\left.e^{-2}, e^{x}=e^{-2}\right)$

Answer: -2

Section 6.4 Logarithmic Functions
\#57-65: Use a calculator to approximate the logarithms. Round to 4 decimal places.
57) $\log 6$ (I enter the problem exactly as it appears)

Answer: . 7782
59) $\log \frac{1}{3}$ (I enter $\log (1 / 3)$ on my calculator)

Answer:-. 4771
61) $\log \left(5^{-3}\right)$ (I enter $\log \left(5^{\wedge}-3\right)$ on my calculator)

Answer:-2.0969
63) $\ln (7)$ (I type the problem as it appears)

Answer: 1.9459
65) $\ln \left(2^{4}\right)$ (I enter $\operatorname{Ln}\left(2^{\wedge} 4\right)$ on my calculator)

Answer: 2.7726
\#66-71 (graphs of common logarithmic functions)
67) $y=\log _{3} x$
a) Graph the logarithmic functions. First write the equation in exponential form, then create a table of values and plot the points.

Write without $\log 3^{y}=x$

Create a table of values, I will put the numbers $2,1,0,-1,-2$ in the y column and solve for x.

x	y	point
3^{2}	2	$(9,2)$
3^{1}	1	$(3,1)$
3^{0}	0	$(1,0)$
3^{-1}	-1	$(1 / 3,-1)$
3^{-2}	-2	$(1 / 9,-2)$

b) State the domain of each function.

The graph is supposed to always be to the right of the y-axis. The graph is never supposed to touch the y-axis, so the domain should be $x>0$

Answer: (0, ∞)
69) $y=\ln (x)$
a) Graph the logarithmic functions. First write the equation in exponential form, then create a table of values and plot the points.
$y=\log _{e} x$ (write so can see the base)
$\mathrm{e}^{\mathrm{y}}=\mathrm{x}$ (write without log)
Create a table of values, I will put the numbers 2,1,0,-1,-2 in the y column and solve for x .

x	y	point
e^{2}	2	$(7.39,2)$
e^{1}	1	$(2.72,1)$
e^{0}	0	$(1,0)$
e^{-1}	-1	$(.37,-1)$
e^{-2}	-2	$(.14,-2)$

b) State the domain of each function.

The graph is supposed to always be to the right of the y-axis. The graph is never supposed to touch the y-axis, so the domain should be $x>0$

Answer: (0, ∞)
71) $y=\log _{1 / 3} x$
a) Graph the logarithmic functions. First write the equation in exponential form, then create a table of values and plot the points.
$\left(\frac{1}{3}\right)^{y}=x$
Create a table of values, I will put the numbers 2,1,0,-1,-2 in the y column and solve for x .

x	y	point
$\left(\frac{1}{3}\right)^{2}$	2	$(1 / 9,2)$
$\left(\frac{1}{3}\right)^{1}$	1	$(1 / 3,1)$
$\left(\frac{1}{3}\right)^{0}$	0	$(1,0)$
$\left(\frac{1}{3}\right)^{-1}$	-1	$(3,-1)$
$\left(\frac{1}{3}\right)^{-2}$	-2	$(9,-2)$

b) State the domain of each function.

The graph is supposed to always be to the right of the y-axis. The graph is never supposed to touch the y-axis, so the domain should be $x>0$

Answer: (0, ∞)
\#72-84:

73a) $f(x+1)$
The $x+1$ needs to go in the parenthesis.
Answer \#73a: $f(x+1)=\log _{2}(x+1)$
73b) To find the domain of a logarithm just set the argument >0
$x+1>0$
$x>-1$

Answer \#73b: $\mathrm{x} \boldsymbol{>} \mathbf{- 1}$ or $(-1, \infty)$

73c) The +1 in the parenthesis shifts the graph to the left 1 unit.

Answer \#73c: Shifts left 1

73d) Just shift each point in the graph of $f(x)$ one unit to the left. I showed the $x>-1$ domain as a vertical asymptote drawn in purple. The graph will not exist to the left of this vertical line $x=-1$.

Graph of $f(x+1)$ drawn in blue

75a) $f(x-2)$
The $x-3$ needs to go in the parenthesis.
Answer \#75a: $f(x-2)=\log _{2}(x-2)$

75b) To find the domain of a logarithm just set the argument >0
$x-2>0$
$x>2$

Answer \#75b: x > 2 or $(2, \infty)$
75c) The (-2) in the parenthesis shifts the graph to the right 3 units.

Answer \#75c: Shifts right 2

75d) Just shift each point in the graph of $f(x)$ two units to the right. I showed the $x>2$ domain as a vertical asymptote drawn in purple. The graph will not exist to the left of this vertical line $x=2$.

Graph of $f(x-2)$ drawn in blue

77a) $f(x)+2$
Just add 2 to the function. The 2 should not go in the parenthesis as it is not inside the parenthesis.

Answer \#77a: $f(x)+2=\log _{2}(x)+2$

77b) set the argument greater than 0 to find the domain. The 2 is not inside the parenthesis, so it does not affect the domain.
(argument >0 gives-) $x>0$
Answer \#77b: x > 0 or ($0, \infty$)

77c) The plus 2 will shift the graph up 2 units.

Answer \#77c: shift up 2 units

77d) Just shift each point in the graph of $f(x)$ two units to the up. I showed the $x>0$ domain as a vertical asymptote drawn in purple. The graph will not exist to the left of this vertical line $x=0$.

Graph of $f(x)+2$ drawn in blue

79a) $f(x)-2$
Just subtract 2 from the function. The 2 should not go in the parenthesis as it is not inside the parenthesis.

Answer \#79a: $\mathbf{f}(\mathrm{x})-2=\log _{2}(\mathrm{x})-2$

79b) set the argument greater than 0 to find the domain. The 2 is not inside the parenthesis, so it does not affect the domain.
(argument >0 gives-) $x>0$
Answer \#79b: $x>0$ or ($0, \infty$)
79c) The minus 2 will shift the graph down 2 units.

Answer \#79c: shift down 2 units

79d) Just shift each point in the graph of $f(x)$ two units to the down. I showed the $x>0$ domain as a vertical asymptote drawn in purple. The graph will not exist to the left of this vertical line $x=0$ which is the y-axis.

Graph of $f(x)-2$ drawn in blue

81a) To find $f(-x)$ the $-x$ will go inside the parenthesis.
Answer \#81a: $\mathrm{f}(-\mathrm{x})=\log _{2}(-\mathrm{x})$
81b) set the argument greater than 0 to find the domain.
$-x>0$
$+x+x$
$0>x$

Answer \#81b: domain $0>x$, this is the same as $x<0$ which is the same as $(-\infty, 0)$ any one of these three answers is correct.

81c) Since the negative is inside the parenthesis, the graph gets reflected over the y-axis.

Answer \#81c: reflects over y-axis
81d) Just reflect each point over the y-axis. The graph will now only exist to the left of the y-axis. The vertical asymptote will still be at $x=0$ (or the y-axis). It's now the right edge of the graph as opposed to the left edge of the graph.

83a) Place the 3 to the left of the log to find this function. The 3 does not go inside the parenthesis as it is not inside the parenthesis.

Answer \#83a: $3 f(x)=3 \log _{2}(x)$
83b) set the argument greater than 0 to find the domain. The 3 is not inside the parenthesis, so it does not affect the domain.
(argument >0 gives-) $x>0$

Answer \#83b: x > 0 or ($0, \infty$)

83c) The y-value of each point of the original graph will get multiplied by 3 when I create my new graph. Each y-value will be further away from the x-axis than in the graph of $f(x)$. This is why we say the graph gets stretched.

Answer \#83c: Stretched.

83d) This is a non-rigid transformation. I need to make a table of values to sketch an accurate graph. We can use the x 's from the given table. We create y's by multiplying each y-value by 2.

The y-value gets pulled away from the y-axis when we multiply the y-values by 3 . This is why we say the function is stretched.

The vertical asymptote doesn't move as the graph isn't shifted left or right.
The vertical asymptote is drawn in purple.
$3 f(x)$ is drawn in blue. The vertical asymptote is drawn in purple.

Here are the points that are marked in the original graph

x	$f(x)$
.25	-2
.5	-1
1	0
2	1
4	2

The table for $3 f(x)$ will have the same x-values, but the y 's will be multiplied by 3 .

Here is the table for $3 f(x)$

x	$2 f(x)$
.25	-6
.5	-3
1	0
2	3

	4	6

